
6 CROSSTALK The Journal of Defense Software Engineering November 1998

The Nature of Software and Its
Quality
Software is pervasive in modern society,
but we are often unaware of its presence
until problems arise. Software is one the
most important and yet one of the most
economically challenging technologies of
the current era. As a purely intellectual
product, it is among the most labor-
intensive, complex, and error-prone
technologies in human history. Even
though many successful software prod-
ucts and systems exist in the world today,
an overall lack of attention to quality has
also led to many problematic systems
that do not work right as well as to many
software projects that are late, over bud-
get, or canceled. In short, “Software
Quality Matters.” [1]

Although no standard industry defi-
nition exists for what constitutes good
quality in software, it is generally taken
to mean that a software product provides
value (satisfaction) to its users, makes a
profit, generates few serious complaints,
and contributes in some way to the goals
of humanity (or at least does no harm)
[2]. Software quality is difficult to define
because there is no single comprehensive
and complete standard definition of its
lexicon. Various aspects and terms are
found in sources such as ISO 9000-3,
Institute of Electrical and Electronics
Engineers Software Engineering Stan-
dards, and various books on the subject.
The following are the key dimensions of
software quality.
• Level of satisfaction. The degree to

which customers or users perceive
that a software product meets their
composite needs and expectations.

• Product value. The degree to which a
software product has value for its

various stakeholders relative to the
competitive environment.

• Key attributes (“ilities”). The degree
to which a software product possesses
a combination of desired properties,
e.g., reliability, portability, maintain-
ability.

• Defectiveness. The degree to which
a software product works incorrectly
in target user environments due to
debilitating operational defects.

• Process quality. In relation to the
development process by which the
product is produced, it means good
people doing the right things in an
effective way.
A definition fashioned from the

above aspects should be created for your
organization and for each project. Every
application or business domain faces a
specific set of software quality issues, and
software quality must be defined accord-
ingly. For example, mission-critical appli-
cations have extremely stringent opera-
tional needs, whereas typical information
system applications must focus on gen-
eral measures of customer satisfaction. It
also is important for each software devel-
opment project to define its specific

meaning of software quality during the
planning phase. Such a definition con-
tributes to the basis for setting objectives
and practical measures of quality
progress and determination of readiness
for release to customers. An example of
such a definition is shown in Figure 1 as
a Figure of Merit (FOM) Quality Factors
Model.

The categories and subcategories of
the FOM model can be weighted as
needed for use by domain or system. The
FOM would be the sum of the
weighted factors.

Now that software quality has been
defined and its supreme importance
established, it is necessary to examine the
cost perspective of the economics of soft-
ware quality, a subject in serious need of
an underlying theory.

Why Is CoSQ Important Now?
If it is an organizational goal to improve
business success through software quality,
it is important to address answers to the
following questions, which are too often
not asked in today’s software develop-
ment groups.

Using the Cost of Quality Approach for Software
Herb Krasner

Krasner Consulting

Cost of software quality (CoSQ) is an accounting technique that is useful to enable our understanding of
the economic trade-offs involved in delivering good-quality software. Commonly used in manufacturing, its
adaptation to software offers the promise of preventing poor quality but, unfortunately, has seen little use to
date. This article discusses the rationale and context for using CoSQ, then defines a basic CoSQ model that
differentiates the costs involved with handling nonconformances due to a lack of quality, appraisal efforts
performed for the achievement of acceptable quality, and efforts to prevent poor quality from occurring.

Figure 1. Software quality FOM model example.



CROSSTALK The Journal of Defense Software Engineering 7November 1998

• How much does poor software
quality cost?

• How much does good software
quality cost?

• How good is our software quality?
Once the answers to the above questions
are factually known, then
• Quality costs can be compared to

overall software production costs and
software profits.

• Quality costs can be compared to
benchmarks and norms.

• Deeper analysis can lead to actions
taken to improve the competitive
situation.

• The bottom-line effect of quality
programs and improvement actions
can be measured.

• Previously hidden costs related to
poor quality become visible.

• The economic trade-offs involved
with software quality become vis-
ible, thus leading to better decision
making.
Software companies concerned about

both product quality and economics can
successfully apply cost of quality prin-
ciples to their software developments, as
shown in the remainder of this article.
CoSQ is the framework used to discuss
how much good software quality and
poor software quality costs.

Adapting Cost of Quality
Principles to Software
The principles behind the modern cost
of quality (CoQ) concept were derived
for manufacturing applications and can
be found in the works of J.M. Juran [3].

In conventional quality literature,
P.B. Crosby [4] asserted that “it is always
cheaper to do the job right the first
time.” However, this statement must be
reconsidered with respect to software
development. Software is, to borrow a
metallurgical term, inherently malleable,
capable of being readily shaped, formed,
and reworked to alter or refine its func-
tion, its quality, or even its purpose.

Malleability is an important reason
to develop technical solutions in software
rather than in hardware. It allows busi-
ness and technology to adapt to rapid
changes in the world, revising objectives
and requirements to address new oppor-
tunities as they arise. Both customers
and producers have come to rely on
software’s ability to accommodate chang-
ing requirements, giving new meaning to
“do the job right.” A static sense of what
is right cannot be presumed during the
lifecycle of many software development
projects, thus giving rise to
nonmanufacturing-oriented lifecycle
models for software, e.g., spiral, incre-
mental, and evolutionary. This addi-

tional dynamism strongly influences the
economics of the software lifecycle and
therefore the application of quality cost
principles to software. Establishing and
maintaining a baseline definition of what
is acceptable quality becomes a key com-
ponent in the new model for CoSQ.

Applying CoQ Principles to
Software
The basis for the new model of CoSQ is
the accounting of three types of costs:
• Those incurred due to a lack of

quality.
• Those incurred in the appraisal and

achievement of acceptable quality.
• Those incurred to prevent poor qual-

ity from occurring.
Costs due to a lack of quality are

further divided into costs of internal
nonconformances and costs of external
nonconformances. Costs of achieving
quality are further divided into appraisal
costs and assurance costs. Prevention
costs are found both in the development
cycle and in organization-wide activities,
such as process improvement and metrics
collection and analysis, as well as in qual-
ity basis definition and management.

Table 1 provides definintions of the
three main CoSQ categories with the next
level of breakdown for typical subitems.
The term “nonconformance” means a

Table 1. Cost of software quality model categories.

Using the Cost of Quality Approach for Software

yrogetaCrojaM yrogetacbuS noitinifeD smetibuStsoClacipyT

htiwgnilaeD
.secnamrofnocnon

.secnamrofnocnonlanretnI otroirpdetcetedsmelborpytilauQ
.tnempihstcudorp

tnemeganamtcefedesaeler-erP , krower , sweiver-er , .gnitseterdna

.secnamrofnocnonlanretxE tcudorpretfadetcetedsmelborpytilauQ
.yreviled

troppuslacinhcetesaeler-tsoP , noitagitsevnitnialpmoc , tcefed
noitacifiton , sedargpulaidemer , .sexifdna

ehtgnisiarppA
.ytilauqfolevel

.tcudorpehtfonoitidnocehtgnirevocsiD folevelehtgnirevocsiD
.secnamrofnocnon

gnitseT , ecnarussaytilauqerawtfos , snoitcepsni , .sweiver

.ytilauqfotnemeveihcaehtgnirussA .gnitaglortnocytilauQ stiduaytilauqtcudorP , .deecorproesaelerotsnoisicedogonroog

roopgnitneverP
morfytilauq

.gnirrucco

.noitinifedsisabytilauQ ytilauqtes,ytilauqenifedotstroffE
sdradnats,slaog , .sdlohserhtdna

.sisylanaffo-edartytilauQ

ytilauqdetalerdnagnitsetecnatpeccarofairetircesaelergninifeD
.sdradnats

detneiro-ssecorpdnatcejorP
.snoitnevretni

ytilauqtcudorprooptneverpotstroffE
.ytilauqssecorpevorpmiro

gniniarT , stnemevorpmissecorp , noitcellocscirtem , .sisylanadna



8 CROSSTALK The Journal of Defense Software Engineering November 1998

deviation in one of the software work products with respect to
understood objectives, requirements, constraints, or standards. A
more detailed taxonomy of CoSQ categories is available in [5].

An Economic Model of Software Quality Costs
There is no validated economic theory of software quality in
existence today, which clearly makes it a ripe subject for
multidisciplinary research. The software community currently
uses a cost of quality theory borrowed from manufacturing,
which is exhibited in Figure 2.

Once quality is defined, the costs of achieving quality
(costs of conformance) and the costs due to lack of quality
(costs of nonconformance) have an inverse relationship to one
another—as the investment in achieving quality increases, the
costs due to lack of quality decrease, a relationship shown in
Figure 2. The quality metric for software is usually a defec-
tiveness level, such as number of defects per system (or part).
In traditional CoQ models, the total cost of quality (TCoQ)
has a point of diminishing returns, a minimum prior to
achieving 100 percent of the quality measure. Current re-
search is investigating whether the law of diminishing returns
applies to the CoSQ in all cases.

As an industry, we have collected little data about CoSQ
that could be used either to challenge or validate this theory.
The little we do have suggests that this economic model may
not account properly for the dynamics of software develop-
ment, since perfection is either not a goal or is a quickly mov-
ing target.

The NASA space shuttle software program collected and
reported on data in this area. In this case, failure-free software
is the goal for much of the software system that flies the
shuttle. As shown in Figure 3, Keller and Rhone [6] were able
to show the increasing cost of achieving extremely high reli-
ability in the mission-critical parts of the flight-control soft-
ware of the shuttle.

CoSQ: Data Found in the Open Literature
Although the costs of software quality assurance and process
improvement have been a topic of concern for over 20 years
[7], extremely limited data has been available in the open litera-
ture that discusses CoSQ. The main sources to date are a Price
Waterhouse study [8], my report [9], S.T. Knox’s article [10],

and the Raytheon efforts [11], which all discuss trends in soft-
ware rework costs.

The Price Waterhouse study analyzed the costs and benefits
of software quality standards from a survey of 19 United King-
dom software suppliers. The study estimated the cost of a qual-
ity control effort (prevention and appraisal costs) to be 23
percent to 34 percent of development effort. The study also
estimated failure costs at 15 percent of development effort for a
total cost of software quality (TCoSQ) of 38 percent to 49
percent of development effort. It must be noted that this study
excluded the costs of unit testing and rework because the sup-
pliers could not separate these costs. With increases in the esti-
mates to account for this oversight, TCoSQ in a software orga-
nization with a quality system can range from 40 percent to 55
percent of development costs with a conformance costs to
nonconformace costs ratio from 1.5-to-2.

Based on the results of my study of Lockheed projects at
various Capability Maturity Model (CMM) levels along with
anecdotal and quantitative data collected in the mid- and late
1980s, I predicted the relationship of Software Engineering
Institute (SEI) CMM-based process maturity level to typical
rework rates and quality levels that could be expected [9]. Table
2 is a slice of that presentation.

Due to the SEI CMM process maturity movement, we have
an aggregation of the payoff data that has been collected as a
result. See [12] for more information on how software process
maturity is related to CoSQ, software defectiveness levels, and
other measures of success.

R. Dion [13] used the CoQ model as one means to inter-
pret the results of improvement initiatives undertaken at
Raytheon Electronic Systems (RES). Recently, T.J. Haley, et al.
[11], updated this study. Using the results of tracking 15
projects, they recorded significant results in a little over three
years. In the Level 1 stage, RES’s CoSQ fluctuated between 55
percent and 67 percent of total development costs, and when
reaching Level 3 process maturity, their CoSQ had dropped to
approximately 40 percent of total project cost. The ratio of
conformance to nonconformance costs was 1.5. By 1996, this
organization’s TCoSQ was approximately 15 percent of devel-
opment costs, and the rework due to both internal and external
nonconformances has been reduced to less than 10 percent of
development costs.

Figure 3. The cost of ultra high reliability in the shuttle software.

Figure 2. Economic model of software quality costs.

Software Quality Assurance



CROSSTALK The Journal of Defense Software Engineering 9November 1998

Knox made similar predictions about CoSQ and rework
expectations across the levels of the SEI CMM (Figure 4) [10].
Starting with the (TCoSQ) at 60 percent of development costs
(based on two industry figures) for CMM Level 1 organiza-
tions, Knox used manufacturing experience to hypothesize that
CMM Level 5 organizations can cut this CoSQ by about 67
percent. He then rationalized the four component costs at each
CMM level. Knox’s model predicted that a CMM Level 3
organization would have a TCoSQ of 50 percent but with a
conformance to nonconformance cost ratio of .5. It appears
that Knox’s model may be a fair predictor of TCoSQ for ma-
turing software organizations but that actual conformance costs
are much higher and nonconformance costs much lower than
what the model predicts.

Typical manufacturing CoQ, ranging from 5 percent to 25
percent of company sales, contrasts significantly with CoSQ.
With the present state of software engineering practice, we can
expect CoSQ to range from 10 percent to 70 percent of devel-
opment costs. Even accounting for the margin between pro-
duction costs and sales, CoSQ appears to be roughly twice
manufacturing CoQ. Also, the optimum manufacturing CoQ
is often in the range of 95 percent to 100 percent of conform-
ance to quality standards. The open literature lacks data for
CoSQ as a function of conformance to quality, but the above
data suggests that software producers have yet to reach such an
optimum.

Elements of a CoSQ Program
There are many possible ways to apply the CoSQ approach. To
date, CoSQ techniques are only being used after the fact to
document the return on investment (ROI) for software im-
provement initiatives because executives want to know that
there is a payoff from the upfront investments. This type of
CoSQ application is expected to accelerate as more process
improvement programs take off.

Other ways in which the CoSQ approach can be used are to
• Provide a basis for budgeting the quality management and

assurance functions.

• Identify specific quality improvement candidates through
causal analysis.

• Compare proposed process improvements and identify the
most cost-effective ones.

• Provide a (one) measure to compare the success of various
projects.

• Reduce the quality costs on a particular project by altering
the process prior to or even on site.

• Determine the potential cost and risk impact of specific
quality trade-off decisions on specific projects.

• Determine a company’s potential legal exposure due to
customer-experienced defects.

• Provide cost data to demonstrate the relationship of em-
ployee efforts to the bottom line.

CoSQ Programmatics
Several points can be made with regard to the programmatic
aspects of measuring and using CoQ information specifically
for software development organizations. These are
• Initiating a CoSQ effort.
• Accounting and gathering the quality cost data.
• Gathering the quality metrics.
• Presenting the results.
• Improving the CoSQ program continuously.

Initiating the CoSQ Effort
Convincing management of the value of tracking CoSQ may
be the initial hurdle one encounters in using this technique.
There is a modest upfront investment required to educate those
to be involved.

Initially, rough estimates of software quality costs may suf-
fice well for several reasons.
• Usually, the largest CoSQ costs can be estimated readily

from time and activity reports, so the expense of data gath-
ering can be limited until its value is demonstrated.

• Controlled, scientific studies are unlikely, and incom-
plete data can suffice in beginning a software cost-benefit
analysis.

Figure 4. Cost of software quality and CMM level.

Table 2. Process maturity, rework, and quality results.

Using the Cost of Quality Approach for Software

ytirutaMssecorP
)citsiretcarahc(

kroweR
)troffetnempolevedlatotfotnecrep(

ytilauQtcudorP
)ytisnedtcefed(

erutammI 05.=> tigidelbuod

dellortnoCtcejorP 05.-52. tigidelgnis

lanoitazinagrOdenifeD
ssecorP

52.-51. X.

tcaFybtnemeganaM 51.-50. X0.

dnagninraeLsuounitnoC
tnemevorpmI

50.=< X00.<



10 CROSSTALK The Journal of Defense Software Engineering November 1998

• The published data indicates that the
quality cost difference between im-
proved and unimproved organiza-
tions is quite large.

• The primary purpose of the initial
CoSQ effort will be to show the
opportunity for cost savings.
The best advice is to use the “keep it

simple” principle in starting a CoSQ
initiative.

Accounting
Gathering quality cost data assumes that
costs have been accounted using task
categories that can be summed into the
four major categories of quality costs.
Many software organizations track costs
in a manner amenable to quality costing,
but many others do not. In the latter
case, a preliminary step of defining and
installing such a chart of accounts is
required. A sample of such a chart of
software quality costs can be found in
[5]. The quality categories in a software
organization’s chart of accounts must be
tailored to reflect its software process. To
realize the full benefit of CoSQ, it must
also allow for the addition of continuous
improvement tasks.

In the best cases, quality costs can be
taken directly from departmental ac-
counting (salary and expense) reports. In
other cases, it may be necessary to resort
to basic accounting and engineering
records, such as schedules, time reports,
defect reports, and purchasing records.
In the worst cases, one may fall back on
interviews with members of the software
organization to construct estimates of
each quality cost category. Exceptions are
in the external failure category.

One of the pitfalls of a CoSQ pro-
gram is “controversial cost categories.”
Usually, the question is about which
costs are normal operating costs and
which are quality costs. An example
would be the cost to produce a project
management plan. Although this plan is
produced for the sake of managing a
project’s expenses and schedule, it also
influences product and process quality.
In this case, it is helpful to keep in mind
the following points.
• The trend among quality specialists

has been to view quality costs as those
incurred to directly prevent, appraise,

and address the nonconformances of
poor quality.

• Arguments over controversial catego-
ries have been known to sabotage cost
of quality programs.

• The largest quality costs are those
that are most easily discerned, for
example, reviews, software quality
assurance, testing, and rework; there-
fore, it is often safe to exclude contro-
versial categories without unduly
affecting the TCoSQ.

• Consistency throughout a CoSQ
program is more important than
thorough inclusion of quality costs
because consistency allows for clear
identification of improvements and
candidates for improvement.
Concerns may also arise as to how

quality costs should be categorized.
Again, consistency is important. For
example, the costs associated with formal
inspections (peer reviews) can be treated
as prevention costs rather than as ap-
praisal costs. This is a matter of interpre-
tation, depending on when a work prod-
uct is considered ready for appraisal.
Although manufacturing inspections are
conducted on pieces after they are pro-
duced, in software production, inspec-
tions may be incorporated into the pro-
duction process. For documentation, this
means that a document is not complete
until it has undergone a peer review and
has been revised. The same is true for
code, especially when code inspections
precede unit testing—clearly an appraisal
activity.

Quality Metrics Collection
With regard to measures of quality, the
CoQ has been used primarily with a
fundamental approach to quality; that is,
defect rates (manufacturing) or service
problem reports (service industries)
rather than broader approaches that
would take into account factors such as
usability, testability, maintainability, and
so forth. The fundamental approach has
the advantages of straightforward mea-
surement and ease of understanding. It
also allows comparison of dissimilar
products. Furthermore, if failure costs are
collected in a defect tracking system, the
most expensive defects can be identified
for root cause analysis [14]. This discus-

sion recognizes that most software pro-
ducers take a fundamental approach to
quality, concentrating on defect measure-
ment, prevention, and removal.

Defect density is a good metric to
start with measuring CoSQ improve-
ments; specifically, CoSQ can be plotted
against defect density at the completion
of system testing. This metric may be
obtained from defect reports during
alpha and beta tests and for a period,
e.g., six months, following product re-
lease. Better yet, it may be generated
statistically based on post-release defect
reports for previous products from the
same organization. Robert Stoddard and
John Hedstrom [15] offer a recent ex-
ample of this approach using Bayesian
statistics in a defect-prediction model.
External failure costs can be estimated
from the defects-at-release metric.

Presenting CoSQ Information
The relationships that have the greatest
impact on management are
• Quality costs as a percent of sales

and profit.
• Quality costs as a percent of total

development costs.
• Quality costs compared to the mag-

nitude of the current problem.
Showing CoSQ as a percent of total

development costs is appropriate to
software for several reasons. First, sales
and profit may not have a direct relation-
ship to the cost of a software product
since software pricing is often dictated by
market forces. Second, all but a small
percentage of software development costs
can be measured in labor hours, so the
costs can be readily shown in either
hours or dollars. Third, the state of the
art in software development is such that
comparing quality costs to development
costs illustrates the magnitude of the
current problem.

Though quality costs as a percent of
development costs can show significant
effects of improvements, this ratio does
not reveal the optimum cost of quality.
The optimum can be seen when quality
costs are shown as absolute costs against
a quality measure. Plotting CoSQ costs
against a quality measure, such as defect
density, reveals trends in an organization’s
quality processes, e.g., in [16].

Software Quality Assurance



CROSSTALK The Journal of Defense Software Engineering 11November 1998

Improving the CoSQ Program
Based on initial usage of CoSQ, organi-
zations should expect to encounter diffi-
culties in the following areas.
• When and how the CoSQ data is

gathered, analyzed, reported, and
used.

• How the approach clashes with
other approaches that are already in
use, e.g., existing work breakdown
structures that do not map easily to
CoSQ categories.

• How the CoSQ model is defined at
the detailed levels.

• How the approach is implemented
consistently in the organization.

• How CoSQ is used for root cause
analysis.

• How CoSQ is used to stimulate
improvements.
These difficulties can be overcome

with appropriate training and coaching.
Feedback on the usefulness of the

CoSQ data presented can guide how the
organizational CoSQ program should be
evolved over time. The lessons learned
from trials and early adopters will be
invaluable. The technology to support
CoSQ will emerge quickly in response to
the needs as they grow, once a consensus
on the CoSQ model is reached. Many of
the Total Quality Management and CoQ
tools available for manufacturing can be
adapted for use in software. CoSQ tools
appear to be a significant market oppor-
tunity yet to be explored.

Conclusion
CoQ is a proven technique in manufac-
turing industries for both communicat-
ing the value of quality initiatives and
indicating quality initiative candidates.
CoSQ offers the same promise for the
software industry but has seen little use
to date. Initial uses of CoSQ show that it
can be a large percentage of development
costs—60 percent or higher for organiza-
tions unaware of improvement opportu-
nities. CoSQ has demonstrated its value
in measuring the ROI of a software im-
provement program, as in the RES case.

CoSQ is a technique that is most
useful in enabling our understanding of
the economic trade-offs involved in
delivering good-quality software. Apply-
ing CoSQ in your organization requires a
small investment that pays off hand-
somely in your increased understanding
of the complexities and hidden issues
involved in the delivery of quality soft-
ware. The proliferation of CoSQ will
help eliminate the debilitating effects of
poor software quality. ◆

About the Author
Herb Krasner, presi-
dent of Krasner Con-
sulting since 1991, has
almost 30 years experi-
ence in the software
engineering profession
as a practitioner, re-

searcher, and teacher. He is a master lead
assessor, having performed over 40
CMM-based appraisals in the last 10
years since being certificated by the SEI.
He has also been involved as a subject-
matter expert in a number of computer-
oriented legal actions. He is the founder
of the Austin Software Process Improve-
ment Network, chairman emeritus of the
Software Quality Institute at the Univer-
sity of Texas and has been chairman of or
keynote speaker at several international
conferences. He also teaches the body of
knowledge for the ASQ Certified Soft-
ware Quality Engineer Program. He has
frequently published and presented his
work in many professional forums.

Krasner Consulting
1901 Ringtail Ridge
Austin, TX 78746
Voice: 512-328-4264
Fax: 512-328-3260
E-mail: hkrasner@cs.utexas.edu

References
1. Software Quality Matters, http://

www.utexas.edu/coe/sqi.
2. Davis, A., Editor’s Column, IEEE Soft-

ware, December 1997.
3. Juran, J.M. and Frank M. Gryna, Juan’s

Quality Control Handbook, 4th ed.,
McGraw-Hill, New York, 1988.

4. Crosby, P.B., Quality Without Tears,
McGraw-Hill, New York, 1988.

5. Campanella, J., ed., Principles of Quality
Costs, 3rd ed., American Society for
Quality Control, Milwaukee, Wis.,
forthcoming, 1999.

6. Krasner, H., “A Case History of the
NASA Space Shuttle Onboard Systems
Project,” SEMATECH Technology
Transfer Report 94092551A-TR, Oct.
31, 1994.

7. Alberts, D.S., “The Economics of Soft-
ware Quality Assurance,” National Com-
puter Conference 1976, pp. 433-441.

8. Price Waterhouse, Software Quality
Standards: The Costs and Benefits: A
Review for the Department of Trade and
Industry, Price Waterhouse Management
Consultants, London, 1988.

9. Krasner, H., “Self-Assessment Experi-
ences at Lockheed,” Proceedings of the
SEI/AIAA Software Process Improvement
Workshop, Chantilly, Va., Nov. 8, 1990.

10. Knox, S.T., “Modeling the Cost of
Software Quality,” Digital Technical
Journal, Vol. 5, No. 4, 1993, pp. 9-16.

11. Haley, T.J., “Software Process Improve-
ment at Raytheon,” IEEE Software,
November 1996, pp. 33-41.

12. Krasner, H., “Accumulating the Body of
Evidence for the Payoff of Software
Process Improvement,” (1997 version),
http://www.utexas.edu/coe/sqi/archive,
also in “The Payoff for Software Process
Improvement: What It Is and How to
Get It,” The Elements of Software Process
Assessment and Improvement, IEEE Com-
puter Society Press, 1998.

13. Dion, R., “Process Improvement and
the Corporate Balance Sheet,” IEEE
Software, July 1993, pp. 28-35.

14. Mandeville, W.A., “Software Costs of
Quality,” IEEE Journal on Selected Areas
in Communications, Vol. 8, No. 2,
1990, pp. 315-318.

15. Stoddard, Robert and John Hedstrom,
“A Bayesian Approach to Deriving
Parameter Values for a Software Defect
Predictive Model,” Proceedings of the
Sixth Annual Conference on Applications
of Software Measurement, Oct. 2 – Nov.
2, 1995, pp. 323-346.

16. Houston, D., “Cost of Software Qual-
ity: Selling Software Process Improve-
ment to Managers,” Software Quality
Journal, forthcoming, 1998.

Using the Cost of Quality Approach for Software


	Contents
	Factoring Process Improvement into the Awarding … 
	of Sustainment Contracts… 
	Lt. Col. Joe Jarzombek… 
	ESIP Director… 
	Driving Quality Through Parametrics… 
	Daniel D. Galorath, Lee Fischman, and Karen McRitchie… 
	Galorath Incorporated, The SEER Product Developers… 
	Using the Cost of Quality Approach for Software… 
	Herb Krasner… 
	Krasner Consulting… 
	 The Software Quality Certification Triangle… 
	Jeffrey Voas … 
	Reliable Software Technologies… 
	Smart Buying with the Federal Aviation Administration's Integrated Capability Maturity Model… 
	Linda Ibrahim… 
	Federal Aviation Administration… 
	Need Information on… 
	Software Quality Engineering?… 
	Metrics for Visual Software Development Initial Research and Findings… 
	Paul A. Szulewski, Mercury Computer Systems… 
	Faye C. Budlong, Draper Laboratory… 
	A Model to Assess Testing Process Maturity… 
	Ilene Burnstein, Ariya Homyen, Robert Grom, C.R. Carlson… 
	Illinois Institute of Technology… 


